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A B S T R A C T

The study aims to prepare antimicrobial films for food packaging using hydroxyethylcellulose (HEC) biopolymer
to decrease environmental problems of synthetic polymer. Different ZnO concentrations (0.05, 0.1, and 0.2 %)
were incorporated into HEC. The citric acid (CA) was used as a crosslinker for HEC and the casting method was
used to prepare HEC/CA and HEC/CA/ZnO films. The prepared films were characterized by FT-IR, XRD, TGA
and SEM. Also, mechanical, wettability and antimicrobial properties were examined. The presence of ZnO
particles in the films was confirmed by XRD. SEM showed surface morphological differences between HEC/CA
and HEC/CA/ZnO films. HEC/CA/ZnO film inhibited the growth of Staphylococcus aureus (91.4 %) and
Escherichia coli (61.7 %) bacteria. Consequently, the prepared films consider a promising material for food
packaging application.

1. Introduction

Recently, there is an increasing interest for films based on natural
polymers, as they proved a wide range of applications (Hamid,
Abolfazl, Ali, Marija, & Seyran, 2019; Shiv, Long-Feng, & Jong-Whan,
2019). The application of biopolymers in food packaging as an alter-
native to synthetic polymers has increased due to its degradability,
availability, biocompatibility, relatively low cost, and nontoxicity
(Kanatt & Makwana, 2020; Shiv et al., 2019). Some natural polymers
have been used for packaging films like carrageenan, chitosan, alginate,
and starch (El-Fawal, 2014; Tabassum & Khan, 2020; Wang, Lim, Tong,
& Thian, 2019). Polysaccharides are attractive biopolymers owing to
their good colloidal nature, film-forming ability, reasonable gas barrier
and mechanical strength properties (Yu, Shen, Song, & Xie, 2018; Zeng,
Li, Chen, & Zhang, 2019). Also, it has many biological activities, like
antitumor (Xie et al., 2020), antioxidant (Ji et al., 2019, Mirzadeh,
Arianejad, & Khedmat, 2020), antibacterial (Mirzadeh et al., 2020),
hepatoprotective (Wang, Luo, Chen, Zha, & Pan, 2015), immunological
activities (Li et al., 2017), and anti-inflammatory (Zhang, Pan, Ran, &
Wang, 2019). But, film properties and antimicrobial activity of those
polysaccharide-based films depend on the type of polysaccharide and

active antimicrobial agent used (Kanmani & Rhim, 2014). Hydro-
xyethylcellulose (HCE) is one of the significant cellulosic ether deri-
vatives and approved by the U.S. Food and Drug Administration (FDA).
Owing to its low toxicity, non-immunogenicity and biocompatibility, it
was used as thickener or binder, or as a protective suspension and
colloid stabilizer in many applications, such as coating, biomedical and
food applications (Aqdas et al., 2019; Kanmani & Rhim, 2014). For
example, HEC with silver nanoparticle was used as a scaffold for skin
tissue engineering applications (Zulkifli, Hussain, Zeyohannes, Rasad, &
Yusuff, 2017). Also, HEC with hyaluronic acid was used as a wound
dressing material (Pengfeng, Liangling, Wenyan, Lihong, & Min, 2018).

Nanofillers are additives in solid form (nanoparticles), which differ
from the polymer matrix in terms of their composition and structure
with particle sizes in the 1–100 nm range (Poole & Owens, 2003). Some
of these nanoparticles (e.g., ZnO, Fe3O4, Ag, and TiO2,) possess good
stability, hydrophilicity, nontoxicity, and low cost (Mittal, 2016). Na-
nofillers play two roles in polymer blends. The first is the enhancement
of several properties such as barrier, mechanical, thermal, and electrical
properties. The second is the modification of miscibility/compatibility
and morphology of polymer blends (Roberto & Luigi, 2014; Yoksan &
Chirachanchai, 2010). When nanofillers were added to suitable
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polymer matrix, they can be used in different applications such as se-
paration and purification (Ahmed, Marcel, Ahmed, & Mathias, 2019),
biomedicine (Ghassane et al., 2019), and food packaging (Olusola,
Sisanda, Freeman, Williams, & Peter, 2019; Raghunath & Perumal,
2017). Zinc oxide - one of the nanofillers - is attractive in the food
packaging industry because it has a wide spectrum of antimicrobial
property (Maharubin et al., 2019). The Food and Drug Administration
has recorded ZnO as safe substance (GRAS). ZnO has been added to
various polymers to produce antimicrobial food packaging materials.
For example, Ahmed, Mulla et al. (2019) incorporated (ZnO) nano-
particles into polylactide/polyethylene glycol/polycaprolactone and
they found that the composite showed excellent antibacterial activity.
Thi, Thi, Thi, and Pornchai, (2018)) prepared nanocomposite film
through a combination of pectin/alginate and ZnO and they found that
the film presented a potential application as edible films. These studies
confirmed that the addition of ZnO could enhance the antibacterial
performance of the film.

This study aims to prepare antimicrobial films using HEC biopoly-
mers with nanofillers (ZnO) to get bio-based film for food packaging
application, consequently decrease the environmental problems of the
synthetic polymer. The films were characterized by Fourier transform
infrared spectroscopy (FT-IR), X-Ray diffraction (XRD), and Scanning
electron microscope (SEM) analysis. Besides, mechanical and wett-
ability properties were examined. The films antimicrobial activity was
tested against Gram-positive Staphylococcus aureus (S. aureus) and
Gram-negative Escherichia coli (E. coli) bacteria.

2. Material and methods

2.1. Material

Hydroxyethylcellulose (Mw=250,000), citric acid (monohydrate),
ZnO (dispersion, nanoparticles< 100 nm particle size), and Luria-
Bertani medium (LB) were purchased from Sigma Aldrich, China. All
the chemicals were used without further purification.

2.2. Methods

2.2.1. Hydroxyethylcellulose film preparation
Casting method was used for HEC/CA and HEC/CA/Zn films pre-

paration. The HEC (2 g) was dissolved in 100mL distilled water and
stirred continuously for 1 h at 70 °C till HEC completely dissolved. The
citric acid (CA) (25 % w/w) was added to HEC as a crosslinker with
stirring for 2 h at 70 °C – in this case we get HEC/CA blank film. After
that, ZnO (0.05, 0.1, and 0.2 %) was added to the solution with stirring
for 1 h at 70 °C – in this case we get HEC/CA/Zn films. Finally, 25 mL of
the solution were transferred to a Petri dish for drying (overnight,
70 °C). Then the films underwent heat treatment at 110 °C for 10min.
for the crosslinking step. The films were kept in vacuum oven till used.

2.3. Characterization

2.3.1. Fourier transform infrared spectroscopy (FT-IR) analysis
Fourier transform infrared spectroscopy (FT-IR) (Nicolet 6700,

Thermo Fisher, USA) was used to record the IR spectra of HEC, HEC/CA
and HEC/CA/ZnO films. Sixteen scans were collected with a 4 cm−1

resolution for all spectra.

2.3.2. X-ray diffraction (XRD) analysis
Shimadzu X-ray diffraction (XRD) (7000, USA, Cu-Kα radiation)

was used to confirm the presence of ZnO at 1.5406 Ǻ wavelength and
step size 20. The data were collected in the range of 10≤ 2θ≤ 60° - in
the form of 2θ versus intensity (a.u) chart. ZnO and HEC/CA/ZnO films
had undergone heat treatment at 300 °C for 5min. before using the X-
ray diffraction device.

2.3.3. Morphology of hydrogel membrane
Scanning electron microscope (SEM, Hitachi TM-100, Japan) was

used to observe film morphology (surface and cross-section). The films
were coated with gold before imaging (two times for 45 s).

2.3.4. Gel fraction determination
This method used to check the crosslinking process efficiency by

determining the gel content percentage. The gel content of a given
material was calculated by measuring the insoluble parts of a dried
sample after immersion in a solvent, while the non-crosslinked fraction
was dissolved and migrated to the solvent (Francis, Mitra, Dhanawade,
Varshney, & Sabharwal, 2009). The HEC/CA and HEC/CA/ZnO films
were dried in an oven for 6 h at 60 °C to the weight, W0. After that, the
films were soaked in distilled water for 24 h at 37 °C (for elimination
the soluble parts from the films). Finally, the films were dried in an
oven for 10 h at 60 °C to weight, W1. The gel fraction (GF %) was cal-
culated by

Gel fraction (GF %) = [W1/W0] ×100% (1)

Tests were carried out in triplicate and were described as a mean
value.

2.3.5. Swelling behavior
Material capacity to absorb solvents was determined via swelling

test. The films were cut into 1 cm×1 cm and dried at 60 °C in an oven
for 10 h to weight, W0. The dried films were soaked in distilled water
and incubated at 37 °C. At certain time intervals, samples were
weighted (Wt) after wiping off the excess surface water using filter
paper. The water uptake was calculated by

Water uptake (%) = {[Wt -W0]/W0} ×100% (2)

where, Wt is the weight of swollen samples at a time, t and W0 is the
initial weight of samples. Tests were carried out in triplicate and were
described as a mean value.

2.3.6. Mechanical properties
Universal materials testing machine (H5K-S, Hounsfield, UK) was

used to examine the mechanical properties (tensile strength (TS) and
elongation at break (E%)) - at room temperature. The cross-head speed
was 10mm/min. to test all specimens (10mm×50mm, n= 3). The
electronic digital micrometer (Mitutoyo, Japan) was used to measure
specimen thickness. “E” expresses the percentage change of initial
gauge length for the specimen (50 cm) at the point of its failure. “TS”
was considered by dividing force (maximum load) by the initial cross-
sectional area of a specimen. Tests were carried out in triplicate and
were described as a mean value.

2.3.7. Antibacterial activity determination
ELIZA microplate reader assay was used to test films antimicrobial

activity (Wang et al., 2010). Foodborne pathogens strain S. aureus
(Gram-positive) and E. coli (Gram-negative) bacteria were obtained
from the Institute of Biological Science and Engineering, Donghua
University, China. LB broth medium was used to refresh the bacterial
cells and incubated overnight at 37 °C. Aliquot of 500 μl of refresh
bacterial strains (104 CFU/ml) was transferred to each well of 6-well
plates. A square film (1 cm×1 cm, sterilized with UV for 4 h) were
added to each well in replica and incubated at 37 °C for one week. Fi-
nally, automated ELIZA microplate reader was used to determine the
absorbances at 620 nm every day for one week.

The inhibition percentage was calculated by the equation:

Inhibition percentage = {[A0 - A1]/ A0} ×100%

where, Ao is the absorbance of the control group and A1 is the absor-
bance of the treated group
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2.3.8. Statistical analysis
All data were presented as mean ± standard deviation (SD) and the

error bars in the figures are the SDs of the data. Obtained results were
statistically analyzed by SPSS software (version 22.0; IBM Corp.,
Armonk, NY). All statistical analysis was used one-way analysis of
variance (ANOVA). Probability values (p) of< 0.05 (p < 0.05) were
interpreted as the occurrence is statistically significant at the 0.05 level.

3. Results and discussion

3.1. Hydroxyethylcellulose crosslinking reaction

The CA has been applied in drug and food applications as a pre-
servative and crosslinking agent (Coma, Sebti, Pardon, Pichavant, &
Deschamps, 2003; El Fawal, Abu-Serie, Hassan, & Elnouby, 2018;
Ghorpade, Yadav, & Dias, 2017). Different mechanisms explain the
crosslinking reaction between CA and HEC. The crosslinking reaction is
based on the esterification reaction between hydroxyl groups (HEC) and
carboxylic groups (CA) (Scheme 1). The esterification reaction depends
on anhydride intermediate formation. Carboxylic groups (from CA)
undergo dehydrates to form a cyclic anhydride - under heating- that
combine with hydroxylic groups (form HEC). The residual carboxylic
groups dehydrate to form other intra-molecular anhydrides which
combine with other hydroxylic groups. The same behavior was found
when CA was used as a crosslinker for hydroxypropyl methylcellulose
(HPMC) (Coma et al., 2003).

3.2. Fourier transform infrared spectroscopy (FT-IR) analysis

The FT-IR spectrum for HEC/CA and HEC/CA/ZnO films has been
showed over the wavenumber range 500–4000 cm−1 (Fig. 1). The FT-
IR spectra for HEC (powder) show the characteristics bands for it
(Table 1) (Sekiguchi, Sawatari, & Kondo, 2003; Vieira et al., 2009).
HEC/CA film displays the same characteristic bands for HEC besides a
band at 1654.9 cm−1 that represent the ester group band between HEC
(OeH) and CA (C]O). The same behavior was observed when HEC
crosslinked using CA (El Fawal et al., 2018). The FT-IR spectra for HEC/
CA/ZnO films show that the ZnO has a small effect on the functional
groups intensities of HEC/CA film as a result of the interactions be-
tween HEC/CA groups and ZnO. The absorbance for −OH group, at
3445.2 cm−1, decreases and shifts to lower wavenumber
(3315.5 cm−1) and become broad with adding ZnO. The C]O ab-
sorption band shifts to a lower frequency owing to the hydrogen bond
between the crosslinked HEC/CA and ZnO. The same behavior was

observed when ZnO was added to polyvinyl alcohol/carboxymethyl
cellulose film (Abutalib, 2019). Also, those results agree with work
having used HEC as a reducing and stabilizing agent in the synthesis of
stable silver nanoparticles (El-Sheikh, El-Rafie, Abdel-Halim, & El-
Rafie, 2013). Comparing the FT-IR of HEC/CA and HEC/CA/ZnO films,
it is clear that the position of OH and CeO stretching shift little. This is
evidence for the formation of a hydrogen bond between ZnO and HEC/
CA. The same behavior was observed after incorporation of the ZnO
with chitosan (Kumar et al., 2012).

3.3. X-ray diffraction analysis

HEC/CA and HEC/CA/ZnO films X-ray patterns are shown in Fig. 2.
The HEC/CA film has no diffraction peaks and this agrees with earlier
XRD pattern of polysaccharides like carboxymethyl cellulose and car-
rageenan (Kanmani & Rhim, 2014). The HEC/CA/ZnO film shows
characteristic diffraction peaks at 2 θ of 56.6, 47.6, 36.3, 34.5, and 31.8
which match to (110), (102), (101), (002), and (100) planes of ZnO,
respectively (Tankhiwale & Bajpai, 2012). Similar results were reported
when ZnO integrated with cellulose acetate and carboxymethyl cellu-
lose (Anitha, Brabu, Thiruvadigal, Gopalakrishnan, & Natarajan, 2012;
Ji et al., 2019; Yu, Yang, Liu, & Ma, 2009).

Scheme 1. Possible crosslinking reaction between HEC and CA (HEC:
Hydroxyethylcellulose; CA: Citric acid).

Fig. 1. FTIR spectra of HEC (powder), HEC/CA film, and HEC/CA/ZnO film
(HEC: Hydroxyethylcellulose; CA: Citric acid; ZnO: Zinc oxide).

Table 1
Functional groups for HEC/CA film.

Wavelength (cm−1) Assign group

3445.2 eOH group stretching of carboxylic group
2930.3 CeH of carboxylic group
1654.9 Glucose ring / COO−

1085.4 CeO bond
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3.4. Morphology of the film

The HEC/CA film has fine morphology with a smooth surface
(Fig. 3a). While HEC/CA/ZnO film displays rough surface structures
with unequal and random distributed ZnO (Fig. 3b). It also shows the
presence of aggregation and different shapes of ZnO. Similar results
were reported when ZnO was added to polyurethane acrylate and
polypropylene film (Kim et al., 2012; Paisoonsin, Pornsunthorntawee,
& Rujiravanit, 2013).

3.5. Gel fraction determination

Gel fraction content is the dried film parts after soaking in water.
The gel fraction percentage of HEC/CA film is 70.1 %, and it increases
to be 79.2 % by using ZnO (0.05 %) (Fig. 4). Increasing ZnO

concentration more than 0.05 % shows an insignificant effect on gel
fraction percentage. These results demonstrate that the addition of ZnO
to HEC/CA film improves the cross-linking network and increases the
insolubility part in water. These results agree with earlier work which
stated that the film can be cross-linked with ions (multivalent), e.g.,
W2+ and Al3+ due to their ability to form chelation with the hydroxyl
groups (Ninan et al., 2013; Yang, Zhang, Peng, & Zhong, 2000). But our
results are incompatible with the work of Tingting et al. (2019) when
they used ZnO with sodium alginate and they found that the gel fraction
decreased as ZnO concentrations increased.

3.6. Swelling behavior

Film water uptake percentage plays a vital role in expecting the film

Fig. 2. X-ray diffraction (XRD) patterns of HEC/CA and HEC/CA/ZnO films
(HEC: Hydroxyethylcellulose; CA: Citric acid; ZnO: Zinc oxide).

Fig. 3. SEM micrograph of the HEC/CA [a: surface; a': cross-section] and HEC/CA/ZnO [b: surface; b': cross-section; and c: surface] films. White color indicates the
distribution of ZnO (HEC: Hydroxyethylcellulose; CA: Citric acid; ZnO: Zinc oxide).

Fig. 4. Gel fraction of HEC/CA and HEC/CA/ZnO films (HEC:
Hydroxyethylcellulose; CA: Citric acid; ZnO: Zinc oxide).
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suitability for a specific application. Films behave like sponge porous
material after 2 h, it has a high degree of water uptake (Table 2). The
presence of strong hydrogen bonding between HEC/CA film chains
makes it has 138 % water uptake (van der Linden, Herber, Olthuis, &
Bergveld, 2003). This strong interaction facilitates water absorption
and swelling without being dissolved and the results agree with earlier
work for HEC crosslinked using CA (Bajpai, Jadaun, & Tiwari, 2016; El
Fawal et al., 2018). Due to the presence of ZnO nanoparticles within the
network that enhances the swelling percentage by interacting with
water molecules, we found that the film containing ZnO (0.05 %) shows
a high-water uptake (Bajpai et al., 2016). The swelling percentage de-
creases as ZnO concentration increases because ZnO makes more
bonding with carboxyl groups and this leads to decrease in the free
carboxyl groups for water molecules. These results agree with the work
of Tingting et al. (2019) when used ZnO with sodium alginate and they
found that ZnO effect on the swelling behavior of the films. Also, the
results agree with work of Zulkifli et al. when used silver nanoparticle
with HEC to prepare scaffolds for skin tissue engineering applications
(Zulkifli et al., 2017).

3.7. Mechanical properties

Fig. 5 shows the effect of ZnO on the mechanical properties of HEC/
CA and HEC/CA/ZnO films. The effect depends on the density and
distribution of intra and intermolecular interactions among the polymer
chains (Chambi & Grosso, 2006). The thickness of HEC/CA film is
24 ± 2 μm and it increases by 29.2 % after formation HEC/CA/ZnO
film (0.2 %). A similar result was observed by Kanmani and Rhim
(2014) for carrageenan and carboxymethylcellulose films, the thickness
increased with the addition of ZnO. Also, a similar result was reported

for poly(vinyl chloride) (PVC) films with ZnO NPs (Li, Xing, Li, Jiang, &
Ding, 2010). When ZnO concentration increases from 0.05 to 0.2 %, the
tensile strength decreases from 10.1–8.5MPa. The decrease in me-
chanical properties with increasing ZnO refer to agglomeration, re-
crystallization, and non-uniform distribution of ZnO in the HEC/CA/
ZnO film. These factors cause weak interfacial interaction between ZnO
and HEC/CA matrix and cause decrease for mechanical properties. A
similar result was reported earlier when ZnO was added to carbox-
ymethyl cellulose and carrageenan (Oun & Rhim, 2017; Yu et al.,
2009).

3.8. Antibacterial activity determination

Due to the presence of citric acid, HEC/CA film shows moderate
inhibition percentage against S. aureus and E. coli strains (Fig. 6a, b).
Earlier results were reported using citric acids to inhibit E. coli and S.
aureus (Al-Rousan et al., 2018). But the inhibition percentage increases
when ZnO was used, especially with S. aureus from 50.5 % to 91.5 %
and for E. coli from 45.9 % to 60.2 % (after one week). The results
confirm that ZnO is less effective against Gram-negative (E. coli) than
Gram-positive (S. aureus) strains. The inhibition percentage against S.
aureus and E. coli is high even after one week. Those results agree with
earlier work of Anitha et al. (2012) and Nafchi, Alias, Mahmud, and
Robal (2012) when they incorporated ZnO with cellulose acetate and
sago starch. They found that ZnO was less effective against E. coli than

Table 2
Water uptake percentage of HEC/CA and HEC/CA/ZnO films.

Time (h) ZnO concentration (%)

0 0.05 % 0.1 % 0.2 %

2 138 ± 15a 190 ± 12b 150 ± 13a 97.9 ± 13c

4 160.8 ± 15a 242.7 ± 19b 219.1 ± 16b 136.7 ± 15c

8 176.9 ± 24a 272.7 ± 24b 241.8 ± 20b 149.8 ± 10c

24 193.1 ± 20a 307.3 ± 27b 277.3 ± 23c 159.2 ± 11d

48 206.1 ± 27 a 354.5 ± 18b 315.1 ± 19 b 160.2 ± 13 c

72 210.8 ± 22 a 359.2 ± 15b 326.4 ± 17 b 162.2 ± 17 c

168 (week) 213.3 ± 24 a 362.1 ± 31b 324.5 ± 22 b 165.4 ± 12 c

*The analysis was done at a fixed time with the change in ZnO concentrations.

Fig. 5. Mechanical properties of HEC/CA and HEC/CA/ZnO films (HEC:
Hydroxyethylcellulose; CA: Citric acid; ZnO: Zinc oxide).

Fig. 6. Antibacterial activities of the HEC/CA and HEC/CA/ZnO films against S.
aureus (a) and E. coli (b) (HEC: Hydroxyethylcellulose; CA: Citric acid; ZnO:
Zinc oxide).
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S. aureus strains. The ZnO antimicrobial activity depends on the bac-
terial cell wall structure. The cell wall structure of E. coli is complex
with a fine peptidoglycan layer, while the cell wall structure of S. aureus
is thick with many layers of peptidoglycan surrounded by an outer
membrane (Anitha et al., 2012; Paisoonsin et al., 2013). In the case of E.
coli, ZnO link with bacterial cell membrane that has phospholipids, li-
popolysaccharide, and lipoprotein which decrease ZnO attachment
(Anitha et al., 2012). But in case of S. aureus, ZnO link with a bacterial
outer cell wall that has pores enough to facilitate ZnO penetration into
the cells and therefore leads to intracellular contents leakage and the
cell dies (Li, Feng et al., 2010). Many possible action mechanisms have
been reported for ZnO antimicrobial activity. One of them supposes the
highly reactive oxygen compounds generation like superoxide and hy-
droxyl radicals, peroxide ions, and hydrogen peroxide from ZnO surface
(Li et al., 2009; Paisoonsin et al., 2013; Zhang et al., 2010). The hy-
droxyl and superoxide radicals - negatively charged- will stay in ex-
ternal bacteria cell wall membrane and damage the lipids, DNA, and
proteins, whereas hydrogen peroxide can enter into the bacteria cell
wall membrane and causes cell death (Paisoonsin et al., 2013;
Tankhiwale & Bajpai, 2012; Zhang et al., 2010).

4. Conclusion

Different HEC/CA/ZnO films were prepared by a casting method
using CA as a crosslinker. The XRD and SEM characterization suggests
that ZnO was incorporated into HEC/CA film and the ZnO was dis-
tributed heterogeneous on the surface of the film. The wettability re-
sults indicated that HEC/CA/ZnO films have good swelling abilities and
hydrophilicity. Also, the HEC/CA/ZnO films have good antibacterial
properties and consequently, the films inhibited the growth of S. aureus
(91.4 %) and E. coli (61.7 %) bacteria. In conclusion, the HEC/CA/ZnO
film can be used as a promising antimicrobial packaging film.
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