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Abstract: Chitosan, a naturally occurring polysaccharide with abundant resources, has 

been extensively exploited for various biomedical applications, typically as wound 

dressings owing to its unique biocompatibility, good biodegradability and excellent 

antibacterial properties. In this work, composite nanofibrous membranes of chitosan (CS) 

and silk fibroin (SF) were successfully fabricated by electrospinning. The morphology of 

electrospun blend nanofibers was observed by scanning electron microscopy (SEM) and the 

fiber diameters decreased with the increasing percentage of chitosan. Further, the 

mechanical test illustrated that the addition of silk fibroin enhanced the mechanical 

properties of CS/SF nanofibers. The antibacterial activities against Escherichia coli (Gram 

negative) and Staphylococcus aureus (Gram positive) were evaluated by the turbidity 

measurement method; and results suggest that the antibacterial effect of composite 

nanofibers varied on the type of bacteria. Furthermore, the biocompatibility of murine 

fibroblast on as-prepared nanofibrous membranes was investigated by hematoxylin and 

eosin (H&E) staining and MTT assays in vitro, and the membranes were found to promote 

the cell attachment and proliferation. These results suggest that as-prepared chitosan/silk 
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fibroin (CS/SF) composite nanofibrous membranes could be a promising candidate for 

wound healing applications. 

Keywords: electrospinning; chitosan; composite nanofibers; antibacterial activity;  

wound dressing 

 

1. Introduction  

As a naturally occurring polysaccharide polymer, chitin is one of the most abundant natural 

biomaterials which can be obtained from shells of crustaceans. Chitosan is a partially N-deacetylated 

derivative of chitin, consisting of polymeric (1→4)-linked 2-amino-2-deoxy-β-D-glucopyranose units 

[1]. Due to the haemostatic activity, non-toxicity, biodegradability, and intrinsic antibacterial 

properties, chitosan and its derivatives have been used in various fields including food, agricultural, 

biotechnological and pharmaceutical products [2,3].  

A range of different processing techniques have been developed to fabricate micro- or nano-scale 

fibrous matrices, including self-assembly [4], template-directed synthesis [5], phase separation [6], and 

electrospinning [7–10]. Among these techniques, electrospinning has been regarded as a facile and 

effective way to fabricate ultrafine fibers from a variety of synthetic or natural polymers [11]. Due to 

their high surface to volume ratio, high porosity and good inter-pore connectivity, electrospun 

nanofibers can be used as filter materials, sensors, wound dressings, controlled release carriers, and 

tissue engineering scaffolds [12].  

Direct electrospinning of chitosan is absolutely difficult [13]. In order to expand the application of 

chitosan, electrospinning of chitosan has usually been conducted from its blend solutions with another 

electro-spinnable polymer, such as poly(ethylene oxide) (PEO) [14], poly(vinyl alcohol) (PVA) [13], 

poly(lactic acid) (PLA) [15], and silk fibroin [16]. Natural polymers are generally preceded over 

synthetic polymers for tissue engineering applications in the case of their proven biocompatibility and 

absorbable biodegradation products. Silk fibroin is extracted from Cocoons of Bombyx mori silkworm, 

which is abundant and easily gathered. Additionally, as a promising biomaterial, Silk fibroin has 

diverse excellent properties including good biocompatibility, remarkable air permeability and 

biodegradation, low inflammatory reaction and so on [17,18]. Chitosan blending with silk fibroin could 

facilitate the electrospinning process, and provided favorable biocompatibility and biological 

interactions.  

Ideal wound dressings should make the wound free from infection, and have excellent 

biocompatibility [19]. Polymers with intrinsic bacteriostatic and/or bactericidal activity have more 

advantages as wound dressing materials. Therefore, the chitosan/silk fibroin membrane could be a 

good candidate for wound dressing applications. 

The objective of this paper is to find the properties of electrospun CS/SF nanofibers, including the 

morphologies of CS/SF composite nanofibers, the mechanical properties, antibacterial activities and 

biocompatibility in vitro, which could be beneficial to the composite nanofibrous membranes serving 

as varied wound dressings.  
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2. Results and Discussion  

2.1. Morphology of CS/SF Blend Nanofibers 

The silk fibroin–chitosan composite fibers with a diameter ranging from 185.5 ± 114.7 nm to  

484.6 ± 410.8 nm were fabricated using electrospinning. Figure 1 shows scanning electron microscopy 

(SEM) micrographs and diameter distribution histograms of CS/SF hybrid nanofibers. Pure silk fibroin 

nanofibers had a larger average diameter (484.6 ± 410.8 nm) than CS/SF nanofibers. The average 

diameters of electrospun CS/SF hybrid nanofibers were 249.7 ± 157.1 nm, 214.0 ± 108.7 nm and  

185.5 ± 114.7 nm, respectively, with chitosan weight ratios of 20%, 50% and 80%. Fiber diameters 

decreased with the increasing of chitosan content. The other parameters involving voltage, collecting 

distance, feed rate and solution concentration were fixed during electrospinning, therefore, fiber 

diameters are mainly dependent on the ratio of chitosan to silk fibroin.  

Figure 1. SEM micrographs of electrospun CS/SF blend fibers: (a) CS/SF (80/20);  

(b) CS/SF (50/50); (c) CS/SF (20/80); (d) pure SF. 

 

2.2. Crosslinking of Fibers 

The nanofibers containing silk fibroin or chitosan are water soluble. Even a drop of water on the 

membranes can destroy the nanofibrous structure. By placing the nanofibers into a desiccator filled 

with GTA vapor, the CS/SF nanofibers can be crosslinked appropriately. Crosslinking of silk fibroin 

and chitosan with GTA involves the reaction of free amino groups of chitosan and amino acid of the 
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silk fibroin with the aldehyde groups of GTA [23]. After crosslinking, the membranes were water 

insoluble. 

2.3. Mechanical Properties 

The tensile stress-strain curves of as-prepared composite nanofibrous membranes are presented in 

Figure 2. The stress and strain of the composite nanofibrous membranes at break are summarized in 

Table 1. The tensile strength of the cross-linked nanofibrous membranes increased from 1.3 MPa to 

10.3 MPa with the increased content of silk fibroin. The elongation at break of the cross-linked 

nanofibrous membranes showed an increased trend with the increasing proportion of silk fibroin. These 

results suggested that the addition of silk fibroin was beneficial to enhancing the mechanical properties 

of CS/SF nanofibers.  

Figure 2. Tensile stress-strain curves of cross-linked CS/SF composite membranes with 

various chitosan contents. (a) 0%; (b) 20%; (c) 50%; (d) 80%. 

 

Table 1. Mechanical Properties of Cross-Linked CS/SF composite nanofibrous membranes. 

Crosslinked 

CS/SF (wt/wt) 
0:10 2:8 5:5 8:2 

Tensile stress 

(MPa) 
10.3 ± 0.24 1.2 ± 0.13 1.1 ± 0.22 1.0 ± 0.21 

Ultimate strain  

(%) 
2.8 ± 0.22 3.8 ± 0.21 2.5 ± 0.25 1.3 ± 0.20 

2.4. Evaluation of Antibacterial Activity in Vitro 

In order to investigate the antibacterial activity of composite nanofibrous membranes with same 

weight, the optical density method was used to measure the inhibition effects of composite 
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nanofiberous membranes with different ratios on the growth of E. coli and S. aureus. Figure 3 shows E. 

coli and S. aureus growth curves of the control and tested groups, respectively. The optical density 

(absorbance at 570 nm, A570) reflected the number of microorganisms in the cultured medium. Lower 

absorbance meant higher inhibition effects of composite nanofibrous membranes on the bacteria. 

Although the antibacterial effect on S. aureus had no obvious difference among those groups 

(Figure 3B), in Figure 3A all tested groups had less optical density compared with the control group 

with no nanofibrous matrices at any time point. Therefore, the composite nanofibrous membranes had 

obvious antibacterial effect on the E. coli, and the antibacterial effect increased with the increase of 

chitosan content. These results suggested that the content of chitosan was a dominant element in the 

antibacterial effect, and the antibacterial effect of composite nanofibers varied on types of bacteria.  

Figure 3. Growth curves of E. coli and S. aureus in the presence of CS/SF as measured at 

570 nm. (A) E. coli; (B) S. aureus (a) CS/SF (80/20); (b) CS/SF (50/50); (c) CS/SF(20/80); 

(d) pure SF; (e) control growth. 

 

2.5. Cell Morphology and Proliferation  

Hematoxylin and eosin (H&E) staining was reconstructed to observing cell morphologies on the 

CS/SF membranes and glass cover slips, as shown in Figure 4. It can be seen that fibroblasts exhibited 

a spreading shape-polygonal and flatten morphology on composite nanofibrous membranes, which 

suggested that the cells could function biologically on the nanofibrous membranes and nanofibrous 

structure is available for cell attachment [24,25]. Figure 4a showed that most of the free fibroblasts on 

cover slips had a spread out morphology, while some fibroblasts still remained spherical in shape. The 

results suggested that the CS/SF composite nanofibrous membranes were beneficial to the fibroblast 

development. 
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Figure 4. Comparison of fibroblasts proliferation on electrospun silk fibroin–chitosan 

nanofibers and controls: (a) glass cover slips; (b) CS/SF (80/20); (c) CS/SF (50/50);  

(d) CS/SF(20/80); (e) pure SF. (H&E Staining, ×400 light microscope). 

 

The level of cell growth and proliferation on these membranes and glass cover slips were assessed 

using MTT assay in vitro (Figure 5). It can be seen that the absorbance index of the tested groups 

increased with the increase of culture time. In the first three days, statistically significant differences 

(p < 0.01) were observed in the cell activity between CS/SF fibrous membranes and glass cover slips, 

which implied that the nanofibrous membranes were beneficial to cell development. It was found that 

there was no big difference in the cell activity of all the test groups except CS/SF (50/50) group after 

5-day culture. While the number of fibroblasts on CS/SF fibrous membranes exhibited remarkably 

higher than those on glass cover slips after 7-day culture. These results indicated that different ratios of 

electrospun CS/SF nanofibers promoted the attachment and proliferation of fibroblasts significantly 

under our conditions compared to the cover slip control. 
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Figure 5. Comparison of fibroblasts proliferation on electrospun silk fibroin–chitosan 

nanofibers and controls: (a) glass cover slips; (b) CS/SF (80/20); (c) CS/SF (50/50);  

(d) CS/SF (20/80); (e) pure SF. Error bars represent mean ± SD for n = 3. **p < 0.01.  

 

3. Experimental Section  

3.1. Materials  

Main CS (My Medium molecular weight; 75–85% deacetylated) was purchased from  

Sigma-Aldrich Chemical Company (St. Louis, Missouri, U.S.). Cocoons of Bombyx mori silkworm 

were kindly supplied by Jiaxing Silk Co. Ltd. (China). 

The solvents used in this work include 1,1,1,3,3,3,-hexafluoro-2-propanol (HFIP, Shanghai Darui 

Finechemical Co., Ltd.) and 2,2,2-trifluoroethanol (TFE, Shanghai Darui Finechemical Co., Ltd.). All 

products were used without further purification. 

3.2. Preparation of Regenerated SF 

Raw silk fibers were boiled three times with 0.5% (w/w) NaCO3 solution for 30 min and then 

rinsed with distilled water. Degummed silk (silk fibroin, SF) was dissolved in a ternary solvent system 

of CaCl2/CH3CH2OH/H2O (1/2/8 in mole ratio) at 65 °C for 1 h. Then the solution was dialysed with 

cellulose tubular membrane (Sigma Co., 250–257 µm) in distilled water for 3 days, after filtering the 

regenerated SF sponges was obtained by freeze drying. 

3.3. Electrospinning 

Silk fibroin was dissolved in HFIP and Chitosan was dissolved in the mix-solvent HFIP / TFA with 

the volume ratio of 9/1. The two solutions were mixed together at different ratios (w/w). 
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Electrospinning was performed as follow under room temperature. The solutions were filled into a 

2.5 mL plastic syringe with a blunt-ended needle (ID = 0.21 mm). The syringe was located in a syringe 

pump (789100C, Cole-Parmer, U.S.) and dispensed at a rate of 0.8 mL/h. A voltage of 20 kV using a 

high voltage power supply (BGG6-358, BMEICO. LTD. China) was applied across the needle and 

ground collector, which was placed at a distance of 12–15cm. 

3.4. Glutaraldehyde Vapor Crosslinking of Nanofibers 

The CS/SF nanofibrous membrane was crosslinked in a sealed desiccator containing 10 mL of 25% 

glutaraldehyde (GTA) aqueous solution. The membranes were placed on a holed ceramic shelf in the 

desiccator and were crosslinked at room temperature for 24 hours. After crosslinking, the samples were 

dried by vacuum at ambient temperature. 

3.5. Scanning Electron Microscopy Analysis 

The morphologies were observed with a scanning electronic microscopy (SEM; TM-1000) at an 

accelerated voltage of 15 kV. The mean fiber diameters were estimated using image analysis software 

(Image-J, National institutes of Health, U.S.) and calculated by selecting 100 fibers randomly observed 

on the SEM image. 

3.6. Mechanical Properties 

Rectangular membrane specimens with a dimension of 10 mm × 50 mm were prepared according to 

the method reported in the literature [20,21]. The specimen thickness was exactly quantified using a 

micrometer with a precision of 0.01 mm. The tensile testing of membrane was performed using a 

universal materials tester (H5K-S, Hounsfield, U.K.) with a load cell of 50 N at ambient temperature of 

20 °C and humidity of 65%. A cross-head speed of 10 mm/min was used for all of the specimens 

tested. Each example was measured three times. The machine-recorded data were used to plot the 

tensile stress–strain curves of the specimens.  

3.7. Antibacterial Assessment 

Antimicrobial activity test on membranes was carried out using turbidity measurement method. 

E. coli and S. aureus were taken as model gram-negative and gram-positive bacteria. The tested 

specimens were CS/SF (80/20), CS/SF (50/50), CS/SF (20/80), pure SF, and SF membranes with the 

same weight, which were sterilized for 2 h using UV.  

Single colony of E. coli and S. aureus grown on agar culture medium were transferred into 100 mL 

of liquid seed medium separately [22]. After 12 h of cultivation at 37 °C with shaking at 160 rpm, 

5 mL of cell suspension was introduced into a 250-mL Erlenmeyer flask containing 100 mL of 

fermentation medium, and then the membranes were put in the Erlenmeyer flask. The culture was kept 

at 37 °C for 24 h under agitation. Samples drawn from the systems every two hours were analyzed 

spectrophotometrically by measuring the absorbance at 570 nm (Spectrophotometers (UV-2102pcs, 

UNICO(SHANGHAI) Instruments Co., Ltd.). Studies were performed in triplicate and average values 

with standard deviation errors were reported.  
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3.8. Hematoxylin and Eosin (H&E) Staining and MTT Analysis 

Fibroblasts (L929) were cultured in cell culture flasks with culture medium containing 10% fetal 

bovine serum (FBS) in RPMI 1640. The media were replaced every two days, and the culture were 

maintained in a humidified incubator at 37 °C with 5% CO2. Electrospun nanofibrous membranes were 

prepared on circular glass cover slips (14 mm in diameter) and fixed with steel rings in the 24-well cell 

culture plates. Nanofibrous membranes were sterilized by 75% ethanol for 2 h and then washed with 

phosphate-buffered saline solution (PBS) three times, and lastly washed with the culture media. Cells 

were trypsinized when their density reached 80–90% of the cell culture flask and counted with a 

hemocytometer.  

The hematoxylin and eosin (H&E) staining was used to investigate cell attachment and 

proliferation. After three days incubation, the fibroblasts were fixed in 10% paraformaldehyde for 

20 min, and then washed with distilled water for four minutes. After that the fibroblasts were stained in 

hematoxylin for 10 min, followed by washing with running tap water. The fibroblasts were then 

dehydrated in 95% alcohol, and the cytoplasm were stained by eosin for 2 min, then lastly dehydrated 

in 70% alcohol and allowed to dry. The stained fibroblasts were viewed and photographed at 

magnification (×400) by using Olympus phase contrast microscope (Model 1 × 70, Japan). 

To evaluate cell proliferation, fibroblasts were seeded onto cover slips and nanofibrous membranes 

(n = 4 ) at a density of 1.1 × 10
4
 cells/well for 1, 3, 5, and 7 days, using methylthiazol tetrazolium 

(MTT) assay. At the appointed time the culture media were removed, and then washed three times with 

PBS to remove the residual culture media. Each sample was added with 360 μL serum-free DMEM 

medium and 40 μL MTT solution (5mg/mL MTT stock solution in PBS), and incubated at 37 °C for  

4 h to allow the formation of MTT formazan. Thereafter, the culture media were extracted and 400 μL 

dimethylsulfoxide (DMSO) was added. When the formazan crystals were sufficiently resolved, 100 μL 

of each sample was poured into a 96-well plate and tested by an Enzyme-labeled Instrument (MK3, 

Thermo, U.S.), at 570 nm. 

3.9. Statistical Analysis 

All experiments were conducted at least three times and all values were reported as the mean and 

standard deviation. Statistical analysis was carried out by the one-way analysis of variance (ANOVA) 

performed in SPSS software. The statistical difference between two sets of data was considered when  

p < 0.01. 

4. Conclusions  

The best wound dressing should be biocompatible and antibacterial. In this study, blended chitosan 

and silk fibroin nanofibrous membranes have been successfully prepared by electrospinning in a 

HFIP/TFA spinning solvent. The average diameter of as-prepared nanofibers increased with the 

increase of silk fibroin content. Furthermore, the addition of silk fibroin enhanced the mechanical 

properties of composite nanofibrous membranes. From the MTT assay, it was found that CS/SF 

composite nanofibrous membranes promoted cell attachment and proliferation. Turbidity measurement 

showed the inhibition of composite nanofibrous membranes on the growth of the Gram-negative 
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bacteria E. coli. The antibacterial activity increased greatly with an increasing proportion of chitosan, 

which was significantly beneficial to the CS/SF nanofibrous membranes serving as wound dressings. 

The CS/SF nanofibrous membranes could prospectively be developed as a commercial product in 

wound healing treatment in the future. 
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