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In this study, a novel cellulose diacetate based copolymer used as tissues scaffold, cellulose diacetate-
graft-poly(ethylene terephthalate) (CDA-g-PET) was developed by ‘‘graft onto” strategy using 3-Isocyan
atomethyl-3,5,5-trimethylcyc-lohexyl isocyanate (IPDI) as a coupling reagent of cellulose diacetate and
poly(ethylene terephthalate), and using dibutyltin dilaurate (DBTDL) and 1-butyl-3-
methylimidazolium chloride salt ([Bmim]Cl) as catalysts. CDA-g-PET copolymers with five different graft-
ing ratios were obtained by the regulation of the reaction time. It was proved by the FT-IR spectra of the
purified copolymers that PET had been successfully grafted onto CDA backbone. Afterwards, CDA-g-PET
nanofibers were fabricated via electrospinning and further were cross-linked by means of treating in glu-
taraldehyde (25%wt) aqueous solution for 48 h. The uniform and smooth fiber morphology was proved by
SEM and the diameter decreased with the increase of grafting ratio. Moreover, the value of TGA revealed
that the grafting PET onto CDA backbone would improve heat-resistant quality of CDA and help to
improve the ability of thermo processing. The graft of PET onto CDA significantly enhanced mechanical
property of copolymer compared with CDA. The results of hemolysis ratio indicated that hemolysis ratio
has decreased compared with CDA, highlighting the potential application in the field of contacting with
blood. In vitro cell viability indicated that CDA-g-PET would enhance biocompatibility compared with
CDA.

� 2018 Elsevier B.V. All rights reserved.
1. Introduction

In recent years, cellulose has drawn more and more attention
due to its abundant source, high biocompatibility, biodegradable
and other excellence properties. Among them, cellulose diacetate
(CDA), with the average degree of substitution (DS) ranging from
2.2 to 2.7 acetyl groups per glucose group, has been widely used
in the scope of cigarette tows [1], biosensor [2] and membrane sep-
aration. Processing methods of CDA were mainly divided into
thermo process and solution method. Because a great quantity of
polar groups located on CDA, such as ethanoyl and hydroxyl gener-
ally cause strong intra- and intermolecular forces, leading to very
high flow temperature (Tf) close to thermo degradable temperature
(Tm), conventional thermal process is inappropriate [3]. Therefore,
solution method such as electrospinning [4], drying spinning [5]
and wetting spinning [6] would be more popular, especially in tis-
sues scaffold. However, original CDA has low mechanical property
[7], which limits its widely application in tissues scaffold. To
improve mechanical property for tissues scaffold, CDA fibers pre-
pared by solution method are blended with high mechanical prop-
erty polymers in commercial spinning, such as polycarbonate (PC),
nanocrystals (CNC) and others petroleum-based polymers. For
example, Soyama et al., used polyester resins (PAA, PBSA) and glass
fibers to improve the mechanical property of cellulose diacetate,
and the results showed that the blending strength and impact
strength were markedly improved [8].Ye et al., reported the simply
blending of CDA/epoxy resin (EP) and curing with isophorone
diamine (IPDA), and the results showed that the tensile strength,
flexile strength, flexile modules and hardness of CDA/EP cross-
linked by IPDA were higher than pristine CDA and the simple
CDA/EP binary blend [5]. However, the composite materials by
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blending usually show poor interface compatibility and short-life
in application. Therefore, chemical modification of CDA with func-
tional polymer or polymer resins are widely used in commercial
production and research [9]. Such as, Guillaume et al., demon-
strated the successfully grafting polystyrene onto cellulose acetate
(CA-g-PS), and the enhanced mechanical properties after grafting
[10]. Yuan et al., synthesize the CDA-SiO2 composite coating mate-
rial to improve the electrolyte wettability and the thermal stability
of Li+-ion battery separators [11].

Polyethylene terephthalate (PET) has been widely used as rein-
forcing material because of its good mechanical property. PET was
measure as 115 MPa of tensile strength and attracted much atten-
tion as a reinforce material [12]. However, poor biological property
has limited widely application in the scope of tissues scaffold [13].
So developing novel methods to improve its biological property is a
fundamental requirement. For example, Nina Recek et al., success-
fully modified PET surface by SO2/O2 mixture gas plasma to pro-
mote cell proliferation [14]. Pezzoli et al., changed inertness of
PET and promoted PET biological property through gelatin coating
on PET fiber surface [15]. It should be noted that, to date however,
there are no reports describing the modification of PET using CDA.

Electrospinning (ES) is an effective and facile way to fabricate a
large quantity of nanofibers for the application in commerce and
investigation such as filtration [16,17], drug delivery [18], chemical
catalyze [19], biology [20,21] and so on, due to its easy operate and
control. Generally, ultrathin fibers prepared by ES with the diame-
ter ranging from nanometer to sub-micrometer show excellent
properties, such as large surface area per unit volume, high degrees
of interconnection and porous structure, which can mimics the
structure of native ECM [22]. Different microstructure of fibers
can be processed by tuning the configuration of spinning appara-
tus, such as core-shell fiber, hollow fiber and three-dimensional
fiber scaffold. The morphology of nanofibers may be affected by
many experimental parameters, such as polymers (types, molecu-
lar weight), solvents (types, diffusion in air, polarity), solution
properties (concentration, viscosity, electric conductivity), process
parameters (voltage, feed rate of solution, needle-collector dis-
tance, ambient condition) [23–27].

Tissue engineering scaffold is a kind of biomimetic technology,
which designed material enable active control of cell behaviors and
tissue/organ function, and thereby synergistically facilitate host-
initiated repair/healing/regeneration [28]. Therefore, in this study,
a novel cellulose diacetate based copolymer with excellent bio-
compatibility of CDA and the excellent mechanical properties of
PET was synthesized by graft-onto reaction. The nanofibers of
CDA-g-PET were fabricated via electrospinning. The structure and
thermal properties of CDA-g-PET were investigated. Then nanofi-
ber membranes were investigated by scanning electron micro-
scopy (SEM) and water vapor transmission rate (WVTR) and so
on. The results of hemolysis ratio (HR) and cell viability, showed
that grafting PET onto CDA backbone could decrease hemolysis
and enhance biocompatibility than CDA, they are very important
for tissues scaffold.
2. Materials and methods

2.1. Material

Polyethylene terephthalate (PET, Mn = 4000 g/mol) was self-
synthesized in lab. Cellulose diacetate (CDA, DS = 2.7, Mn =
100,000 g/mol) was purchased in Beijing Enoch technology co.
Ltd. 1,1,2,2-tetrachloroethane (C2H2Cl4, AR, 98%), isophorone diiso-
cyanate (IPDI, AR, 98%) and dibutyltin dilaurate (DBTDL, AR, 98%)
were purchased in Shanghai Ling Feng reagent co. LTD, six fluorine
isopropyl alcohol (HFIP, AR, 98%) and 1-butyl-3-methyl-imidazole
chloride ion liquid ([Bmim]Cl, AR, 98%) were purchased in Shang-
hai Teng Hui Biotechnology co. Ltd. Methylene dichloride (CH2Cl2,
AR, 98%), petroleum ether (MSO, AR, 98%) were purchased in Guo
Yao group reagent co. Ltd.

2.2. Preparation of CDA-g-PET

CDA powders was dissolved in C2H2Cl4 and stirred for 2 h under
nitrogen to obtain a homogenous solvent. PET was added into
C2H2Cl4 in a single-mouth flask and mixed by stirring to obtain a
fully dissolved solution under nitrogen at 70 �C, then coupling
reagent IPDI, catalyst DBTDL and [Bmim]Cl were added to PET sol-
vent to modify the end group (OH) for 6 h, which can make the
reaction of OH and NCO. Then the CDA dissolved in C2H2Cl4 was
added to the PET solvent and react for 1 h, 2 h, 5 h, 10 h and 24
h, CH2Cl2 and MSO were added to the mixture under stirring to
precipitate out the production of CDA-g-PET. Finally, the precipi-
tate was filtered, washed repeated with CH2Cl2 and MSO solvent
and dried in vacuum oven at room temperature for 48 h until con-
stant weight, which were called CAa, CAb, CAc, CAd and CAe,
respectively.

2.3. Electrospinning

Polymer was dissolved in HFIP at a steady stirring speed to
reach a homogeneous solution, then the mixed solution was placed
at room temperature to remove its air bubbles. The ES nanofibers
were processed at room temperature with a needle-collect dis-
tance of 15 cm, polymer solution (CDA and CDA-g-PET) were trans-
ferred into a 5 ml plastic syringe equipped with a stainless steel
flat-tip needle (0.21 mm inner diameter), and polymer fibers were
collected on the collector plate of tin foil paper at a feed ratio of 0.5
ml/h controlled by a syringe pump during the time span of 10 h.
The electric field was provided by a 16 kV high voltage power. HFIP
evaporates during the flight of the fibers from the syringe to the
collector plate. The as-spun fibers were put into vacuum oven for
48 h at room temperature to remove residual HFIP. The sample
crosslinks with 25%wt glutaraldehyde aqueous solution in sealed
dryer. Once removed from the dryer, the membranes were washed
by ethanol to remove cross-linking agent and put into oven for 1 h
at room temperature again.

2.4. Fourier transform infrared spectroscopy (FT-IR)

The FTIR spectra of pristine CDA, pristine PET and CDA-g-PET
were carried out on FTIR Spectrometer (Nicolet 6700, American)
with an accuracy of 4 cm�1, measured on scanning range from
700 cm�1 to 4000 cm�1, the solid samples were grinded well with
KBr press to prepare pellets.

2.5. The measurement of grafting ratio (GR)

Pure the graft copolymer CDA-g-PET from drying in vacuum
oven till constant weight, afterwards, weigh the polymer, calculate
grafting ratio by the following Eq. (2.5).

GR ¼ W3

W1 þW2
� 100% ð2:5Þ

where w1, w2, w3 were the weights of CDA, PET and CDA-g-PET,
respectively.

2.6. Thermogravimetric analysis (TGA)

The TGA of pristine CDA, pristine PET and CDA-g-PET were per-
formed using a TA Q500 instruments. The samples were heated
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from 50 �C to 600 �C at the heating rate of 10 �C�min�1 in dynamic
nitrogen atmosphere.

2.7. Scanning electron microscope (SEM)

The fibrous morphology of pristine CDA and CDA-g-PET were
observed by SEM (JCM-6000, Japan) at an accelerating voltage of
10 kV, all samples were gold sputter coated 30 s under argon in
order to produce electric conductivity. The diameter was measured
by SEM on different parts of 100 fibers. And then use Image J
(National Institute of Health, USA) software to get statistical fiber
diameters and resort to origin 8.0 to calculate fiber diameter
distribution.

2.8. Mechanical property

The tensile strength and elongation of pristine CDA and CDA-g-
PET were performed by universal tensile tester (2K WCMT 2203,
China) at a tensile speed of 10 mm�min�1, all samples for mechan-
ical test are shaped in rectangular shape (25 � 4 � 0.05 mm3), the
result was the average value of at least three test values.

2.9. Water contact angle

The wettability of the prepared pristine CDA and CDA-g-PET
membranes were measured at room temperature and 50% humid-
ity by automatic contact angle meter (JC2000D2, China) which
deionized (DI) water drop size was 0.1 ml, the result of contact
angle was the average value of at least three test values at different
locations on the per membrane.

2.10. Water vapor transmission rate (WVTP)

WVTR is determined by the American standard method E96-00
at 37 �C and 85% humidity for 24 h. Briefly, membrane samples
(thickness of 0.1 mm ± 0.015 mm) of CDA and CDA-g-PET were
sealed over the circular opening of glass tubes (diameter of 13
mm) filled with 10 ml DI water, those tubes were kept in sealed
constant temperature humidity chamber which contains a satu-
rated solution of ammonium sulfate and maintains the tempera-
ture of 37 �C and the humidity of 85% [29]. The WVTR
(g�m�2�day�1) was calculated by the following equation:

WVTR ¼ W0 �Wf

AT

where A was the tube mouth (m2), T was the trial time, W0 and Wf

were the weights of trial before and after, respectively.

2.11. Hemolysis rate analysis

Each of fiber mat samples (circle-shape of 9 mm diameter) was
dipped in normal salt solution bath and incubated at 37 �C for 24 h
previously. And then nanofiber mats incubate in 0.2 ml fresh anti-
coagulated blood and 10 ml normal salt solution. Additionally, pre-
pare 10 ml normal salt solution with 0.2 ml fresh anti-coagulated
blood and DI water with 0.2 ml fresh anti-coagulated blood as neg-
ative control group and positive control group, respectively.
Finally, all samples incubate at 37 �C for 1 h. After the incubation,
remove the membranes, all tubes of sample centrifuge at 2000
rpm for 10 min, and the absorbance was measured by UV–Vis
(SP-1900, China) at 545 nm, the hemolysis rate was calculated
through the following equation:

HR ¼ Dt � De

Dp � De
� 100%
where Dt, De, Dp were the absorbance of test sample, negative con-
trol group and positive control group, respectively.

2.12. Biocompatibility

The biocompatibility of pristine CDA and CDA-g-PET were mea-
sured by the adhesion and growth of L929. Fibroblast were seeded
in the 24-well plates at a concentration of 20,000 cells/well, circle-
shape membranes of CDA and CDA-g-PET with 14 mm diameter
were sterilized by UV radiation for 48 h, and then placed in the
wells with attaching cells. In addition, cells were seeded in a blank
well as blank control. All cells grew at 37 �C incubator in a humid-
ified atmosphere of 5% CO2 for 1, 3 and 7 day. The viability of cells
was evaluated by MTT, the optical density (OD) values were mea-
sured at 490 nm, the percent viability was calculated by following
equation:

cell v iability ¼ ODt

ODc
� 100%

where ODt was the absorbance of CDA or CDA-g-PET at 490 nm, ODc

was the absorbance of blank control group at 490 nm.

2.13. Statistical analysis

Origin 8.0 (origin Lab Inc, USA) was applied for helping statisti-
cal analysis, all the results were expressed as means ± standard
deviation (SD), statistical differences determined by the one way
analysis of variance (ANOVA) were considered significant at
p < 0.05.
3. Result and discussion

3.1. The preparation and characterization of CDA-g-PET

Used as tissues scaffold, excellent mechanical properties and
biocompability are very important. In this study, to improve the
mechanical property and biocompability of CDA, we try to fabri-
cated novel CDA-based polymer CDA-g-PET by grafting PET onto
CDA backbone using IPDI as coupling reagent, DBTDL and [Bmim]
Cl as catalysts, schematic illustration as show in Fig. 1a. Fig. 1b
shows the optical image of CDA-g-PET copolymer nanofiber mem-
brane, which indicated that the cellulose diacetated based copoly-
mer nanofiber membrane could be prepared in large scale via
electrospinning.

Chemical structure of copolymers was characterized by FTIR
spectroscopy, as shown in Fig. 2. Fig. 2a showed the FTIR spectrum
of CDA. The absorbance peaks of acetyl group (CHCOO) were
observed at 1753 cm�1, 1370 cm�1 and 1239 cm�1 corresponding
to C@O, CAO, CAH. and 3487 cm�1 and 1048 cm�1 were repre-
sented to the hydroxyl and ring of cellulose ether, respectively.
Fig. 2b showed the FTIR spectrum of PET, where 3430 cm�1

was assigned to the OAH in the end of PET, 1722 cm�1 and
1042 cm�1 were attributed to C@O and CAO, 2963 cm�1 and
2903 cm�1 were attributed to the CH2 asymmetric stretching
and CH2 symmetric stretching [30]. Compare with CDA and PET, a
new peak at 1548 cm�1 was corresponded to the amide NH group
and 3425 cm�1, 2918 cm�1, 1716 cm�1, 1206 cm�1, 1064 cm�1,
966 cm�1 were corresponded to NH, CH2, C@O, CAO, ring of
cellulose ether and ArAH, respectively (Fig. 2C), which suggested
the successful preparation of CDA-g-PET.

To get grafting ratio change with time, we calculated the mass
change of CDA, PET and CDA-g-PET, and then obtained grafting
ratio according to Eq. (2.5). As shown in Fig. 3, the grafting ratio
increased with reaction time, but became almost constant after
10 h, which is owing to the steric hindrance increased with the



Fig. 1. (a) Schematic illustration for synthesis of CDA-g-PET, (b) optical image of CDA-g-PET copolymer nanofiber membrane.
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grafting time. Briefly, PET is a long linear molecular chain and ben-
eficial to the grafting reaction at low grafting ratio and low steric
hindrance, as grafting reaction time goes by, especially over 10 h,
high steric hindrance will impede grafting reaction. Especially,
the samples at 1 h, 2 h, 5 h, 10 h and 24 h of grafting time were
named as CAa, CAb, CAc, CAd and CAe, respectively.

The thermo stability is an important factor as it influences pro-
cess and use. The molecular chains of CDA contain a large number
of polar groups such as ethanoyl groups and hydroxyls that can
reduce the thermo stability and accelerate the aging of CDA when
subjected to high temperature. To determined the thermo stability
of CDA-g-PET. The thermal stability of CDA, PET and CDA-g-PET
were measured by thermogravimetric analysis (TGA). As shown
in Table 1. The decomposition onset temperature of CDA is 268
�C, while PET is 380 �C which are consistent with the previous
reports [21,30]. Importantly, the thermo stability of CDA-g-PET
was significantly improve and the decomposition onset tempera-
ture increased with grafting ratio, while the cellulose diacetate
based copolymer maximum decomposition temperature and final
decomposition temperature were closed with pristine cellulose
diacetate. Indicating that grafting PET onto CDA backbone will
improve the heat-resistance quality of CDA, which are significative
in improve the ability of thermo processing and using [31].

3.2. Fabrication and characterization of nanofiber membrane

Fabricate nanofiber membrane was fabricated via electrospin-
ning using HFIP as solvent, then crosslinking with glutaraldehyde
aqueous solution for 48 h. SEM was used to observe the morphol-
ogy of membrane and statistical nanofiber diameter distribution.
Results as shown in Fig. 4, it can be observed that the fibers are
uniform, bead-free and random oriented. The average diameters
of CDA, CAa, CAb, CAc, CAd and CAe were 1.61 lm, 1.40 lm, 1.14
lm, 1.02 lm, 1.09 lm and 0.80 lm, respectively. The result



Fig. 2. FTIR spectra of (a) CDA, (b) PET and (c) CDA-g-PET.

Fig. 3. The effect of reaction time on the grafting ratio.

Table 1
TGA data of CDA, PET and grafting copolymer of CA.

Sample Initial
decomposition
temperature/�C

Maximum
decomposition
temperature/�C

Final
decomposition
temperature/�C

CDA 268 366 399
CAa 292 362 403
CAb 296 362 401
CAc 297 365 398
CAd 300 365 396
CAe 310 363 399
PET 380 445 475
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revealed that the diameter of CDA-g-PET decreased with the
increase of grafting ratio by the same electrospinning process,
which might be contributed to the low surface tension of precursor
solution with the increase of ratio that generally caused the
decrease of diameter.

Mechanical strength is a fundamental requirement for tissues
scaffold, From Table 2, it can be observed that the tensile strength
of CDA-g-PET nanofibers membrane are significant improved com-
pared with CDA nanofibers membrane, indicating that grafted PET
onto CDA copolymer will significant improve CDA nanofibers
membrane mechanical property. These results are probably attrib-
uted to grafting ratio and fiber diameter of nanofibers. In low graft-
ing ratio, mechanical properties of membranes are decided by the
CDA with high degree of intramolecular and intermolecular hydro-
gen bonding interaction and the PET with excellent mechanical
properties. In higher grafting ratio, thinner fibers lead to lower ten-
sile strength and higher elongation at break [32].

The wettability of nanofiber membrane was determined by
water contact angle. As shown in Table 3, the water contact angles
of CDA and PET are 131.25 ± 0.78� and 136.00 ± 1.21�, respectively,
(Especially, the sample of PET was fabricated by coating). After
grafting PET onto CDA backbone, the WCA of CDA-g-PET nanofiber
membrane are close to CDA, but slowly increases with grafting
ratio. This may be due to the introduction of PET with excellent
hydrophobicity to CDA backbone leading to increased surface
roughness of CDA-g-PET membranes [33].

According to the previous research, a desirable wound dressing
should maintain an adequate moisture microenvironment, it will
help to accelerate tissue regeneration. Therefore, the assessment
of WVTR of membrane is necessary [34]. Table 4 showed that the
mean value of WVTR of CAa, CAb, CAc, CAd, CAe, CDA and control
group were 1538, 1553, 1525, 1580, 1564, 1570 and 1980
g�m�2�day�1, respectively. Furthermore, CAa, CAb, CAc, CAd, CAe

and CDA nanofiber membranes can reduce the evaporation of
water loss by 22.3%, 21.5%, 23.0%, 20.2%, 21.0% and 20.7% to
maintain a moisture microenvironment. Especially, the WVTR of
CDA-g-PET nanofiber membranes are close to CDA, indicating that
grafted PET onto CDA backbone didn’t change WVTR quality of CDA.
These results indicated that CDA-g-PET nanofiber membrane can
remain a moisture microenvironment when used as wound dressing.

The hemolysis ratio defined as the degree of erythrolysis that
blood contact material with disruption of the erythrocyte mem-
brane and release hemoglobin into plasma [35,36]. The lower the
hemolysis rate, the better hemocompatibility. Fig. 5 showed that
the hemolysis ratios of CDA and CDA-g-PET nanofiber membrane
are further less than international standard 5% [37], indicating that
these nanofiber membrane possessed good blood compatibility.
Especially, the hemolysis ratio of CDA nanofiber membrane is
0.39%, which is higher than CDA-g-PET nanofiber membrane, indi-
cating that CDA-g-PET nanofiber membranes have better hemo-
compatibility than CDA. In addition, hemolysis ratio decreased
with grafting ratio increased, displaying a better hemocompability.
The reason for this hemolysis ratio might be grafting of hydropho-
bic PET onto CDA backbone, the stronger hydrophobic, the lower
blood adhesion in surface. Moreover, long side molecular chain will
increase roughness of membrane surface and improve hemocom-
patibility [38].

To assess material biocompatibility, cell culture test on material
surface is an effective method [39]. Firstly, the cells were treated
with colorant MTT that can transform glycolysis equivalently,
and then the cell viability on CDA and CDA-g-PET nanofiber mem-
branes with different grafting ratio can be assessed by measuring
the optical density (OD) at 490 nm [22,37]. Fig. 6 showed the via-
bility of fibroblast on CDA and CDA-g-PET nanofiber membranes
after 1, 3 and 7 days of cultured period. At the same time, seeding
cells in a complete media without nanofiber membrane were used
as the control groups. All nanofiber membrane showed significant
increase with incubation time. The cell viability on CDA-g-PET
nanofiber membrane and CDA nanofiber membrane were not sig-
nificantly different at 1 d and 3 d. However, cell viability on CDA-
g-PET nanofiber membrane increased compared with on CDA
nanofiber membrane at 7 d. Cell viability on CDA-g-PET nanofiber
membrane and CDA nanofiber membrane were beyond 90% at 1
day, demonstrating that grafted PET onto CDA copolymer had
low toxicity. It is agreed with that CDA is a kind of good
biocompatibility materials in previous report [40]. At 7 d, cell



Fig. 4. The SEM images and the pictures of diameter distribution of CDA-g-PET and CDA. (a�f) Represent CAa, CAb, CAc, CAd, CAe and CDA respectively.

Table 2
The mechanical properties of CDA and graft copolymers (CA).

Product CDA CAa CAb CAc CAd CAe

Tensile strength/MPa 3.17 ± 0.23 10.79 ± 0.45 13.79 ± 0.44 11.53 ± 0.61 10.34 ± 0.26 10.12 ± 0.22
Failure strain/% 2.92 ± 0.12 3.81 ± 0.09 3.65 ± 0.21 3.66 ± 0.21 3.86 ± 0.17 4.16 ± 0.11

Table 3
Water contact angle of CDA, PET and CDA-g-PET.

Product CDA PET CAa CAb CAc CAd CAe

Contact angle/� 131.25 ± 0.78 136.00 ± 1.21 133.46 ± 1.03 134.96 ± 0.89 135.75 ± 0.91 135.58 ± 0.72 136.01 ± 0.84

Table 4
Water vapor transmission loss of CDA-g-PET, CDA and blank control group.

Product CAa CAb CAc CAd CAe CDA Control group

WVTR/g m�2�day�1 1538 ± 66 1553 ± 49 1525 ± 53 1580 ± 87 1564 ± 65 1570 ± 78 1980 ± 99
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viability further increased on CDA-g-PET nanofiber membrane
compared with CDA nanofiber membrane, because long molecular
chain will increase the surface roughness of membranes.
Meanwhile, ES membranes can provide a three-dimensional (3D)
structure with high surface area and high porous ratio, improving
cell attachment and proliferation in interfibrous gap [41,42]. The
MTT results demonstrated that CDA-g-PET were better than CDA
biocompatibility property.



Fig. 5. Hemolysis ratio of CDA and CDA-g-PET, respectively.

Fig. 6. Fibroblast viability of CDA-g-PET and CDA at 1, 3 and 7 day, respectively.
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4. Conclusion

In this study, CDA-g-PET copolymers were prepared by grafting
reaction in homogenous solvent. CDA-g-PET has improved heat-
resistant ability compared with CDA. Fabricated nanofiber based
on CDA-g-PET copolymers via electrospinning showed uniform
and smooth morphology and fibrous diameter can be adjusted by
grafting ratio. Moreover, mechanical strength has been signifi-
cantly improved compared with CDA nanofiber. The hemocompat-
ibility and biocompatibility of CDA-g-PET are better than CDA,
meanwhile, nanofiber membrane can keep moisture when used
as wound dressing. In summary, novel CDA-based copolymer and
CDA-g-PET nanofiber membrane are suitable for tissues scaffold.
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